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AFIT/GE/ENG/93D-31

Abstract

The resolution of optical imaging systems is severely degraded from the diffraction limit by the
random effects of the atmosphere. Techniques exist to compensate for the atmospheric turbulence,
one of which is adaptive optics. A critical component in the adaptive optics system is the wavefront
sensor. Presently, two types of sensors are being used-the Hartmann-Shack Wavefront Sensor and
the Shearing Interferometer. Previous studies have compared these two sensors and found them to
perform identically for a point source. However, to date, no comparison has been performed for an
extended source and subaperture spacing larger than the correlation length of the atmosphere, r,.
This thesis has examined this problem and compared these two sensors for the above conditions.
Results indicate that the sensors have comparable performance when an infinite number of photons
are available. However, the photon limited cases indicate superior performance by the Hartmann

Sensor.




PERFORMANCE COMPARISON OF SHEARING INTERFEROMETER
AND

HARTMANN WAVE FRONT SENSORS

I. Introduction

The upper bound on the resolution achievable by a ground based imaging system is set by the
diffraction limit. This diffraction limit is inversely proportional to the size of the optical system.
However, Sir [saac Newton recognized in 1730 that another, more restrictive limit existed when he

wrote:

If the Theory of making Telescopes could at length be fully brought into Practice,
yet there would be certain Bounds beyond which Telescopes could not perform. For the
Air through which we look upon the Stars, is in perpetual Tremor; as may be seen by
the tremulous Motion of Shadows cast from high Towers, and by the twinkling of the
fix’d Stars [16].

This “Tremor” of the air is today known as atmospheric distortion and has been the object of

considerable research for the past several decades [2], [9], [10], [14], [19].

1.1 Atmospheric Turbulence and Its Effect

Atmospheric turbulence arises from the sun’s uneven heating of the Earth. This differential
heating generates pockets of air, called eddies, each a different temperature. Each eddy deflects,
or refracts, the light by an amount related to its temperature. Hence, as light passes from one
air pocket to the next, it is randomly bent as the temperature changes. As the entire wavefront
propagates through the atmosphere, it passes through different “eddies® and hence is bent by
different amounts, (see Figure 1.1), creating uneven lines of constant phase. The resulting image

formed by a telescope looking through the atmosphere is distorted and blurred.
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Figure 1.1. Light Experiencing Atmospheric Turbulence.

From a communication theory perspective, the atmospheric turbulence can be thought of
as a low pass filter with a spatial frequency cut-off far below the diffraction limit. And just as
sharp transitions, such as the corners of a square wave, require high frequencies to pass through
a communication channel, so do the sharp transitions that might be present on a satellite in
Earth orbit. The atmospheric low pass filter effectively removes these high frequency components,
resulting in a blurred image. This cut-off frequency is related to Fried’s Coherence Diameter, r, (2],
which can be thought of as the maximum separation of two points for which the field is correlated.

This parameter is, of course, related to the strength of the atmospheric turbulence.

1.2 Adaptive Optic Compensation

In 1953, Horace W. Babcock [1] proposed using a mirror coated with an oil film to correct
for the phase distortions imposed by atmospheric turbulence. The thickness of the oil film would
be altered by electric charge, changing the optical path length such that the effects of atmospheric
turbulence would be canceled out. This idea is the basis of current adaptive optic systems. Present
day systems are composed of three major components {15]: a phase-shifting optical element, a
wavefront sensor, and a servo-control system, (see Figure 1.2). As the light passes through the

telescope, the atmospheric phase distortions are compensated for by using the phase-shifting optical
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Figure 1.2. Block Diagram of a General Adaptive Optic System.

element, which is usually a deformable mirror. The reflected light is then analyzed with the
wavefront sensor which detects the phase along the wavefront. This information is used by the
servo-control system, usually a dedicated computer or specialized hardware, to compute the residual
phase error and control the deformable mirror, thus closing the loop. Systems using this general
approach have been under extensive development for the past twenty to thirty years. Recent

declassification of this technology has revealed impressive and tantalizing results (3], [4], (17].

1.3 Measurement of Wavefront Phase

The phase of the incident optiéa.l wave cannot be measured directly. One method of indirectly
measuring the wavefront phase is to measure the phase slope of small zones of the wavefront. These
zones, within the overall aperture of the telescope, will be referred to as “subapertures.” These
measurements can be used to create a “map” of the slope and hence the phase along the entire
wavefront. An illustration of how such a phase map might be constructed is given in Figure 1.3 [19].

Here, s* or s? is the phase slope in the z or y direction, respectively, obtained from the wavefront
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Figure 1.3. Phase Map Reconstruction.

sensor. ¢; ; is the wavefront phase at location ¢, j. Therefore, the phase slope could be written as:

¢01 "é—ll
z — y +

¢—l 1 "‘¢-10
y = 1= o7
si =

(1.1)

Examination of Figure 1.3 shows that there are more slope measurements than nodes where we
wish to determine the phase. Thus, a least squares algorithm can be used to reconstruct the phase

wavefront map [10].

Two instruments are commonly used to measure the phase slopes: the Hartmann-Shack
Wavefront sensor and the Shearing Interferometer Wavefront sensor. The Hartmann-Shack Wave-
front sensor, (see Figure 1.4), measures the slope by focusing the wavefront incident onto each
subaperture to form a spot. The slope of the wavefront segment is proportional to the offset of the
spot from center. The Shearing Interferometer, (see Figure 1.5), determines the wavefront siope
by duplicating the wavefront and shifting, or shearing, it with respect to the original. The two
wavefronts are interfered to produce an interferogram. The slope information along the wavefront

can be determined from the information in the interferogram. The Hartmann Wavefront sensor
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Figure 1.4. Diagram of the Hartmann Wavefront Sensor.
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Figure 1.5. Diagram of the Shearing Interferometer.
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and Shearing Interferometer, and how each one measures the phase slopes, are discussed in greater

detail in Chapter II.

As with all practical systems, the Hartman Wavefront sensor and Shearing Interferometer do
not measure the wavefront perfectly. Two significant, and unavoidable, errors associated with wave-
front sensing are photon noise effects and sampling errors. As the brightness of the source decreases,
photon noise can become a considerable problem. Photon noise results from the uncertainty in the
detection of the light due to fluctuations in the photo count statistic, often modeled as a Poisson
process [8:pg. 482]. Photon noise can be decreased by either making the light source brighter,
increasing the integration time for each sample or making the subaperture larger. Sampling errors
occur due to the finite size of the subaperture. Instead of measuring the exact waveftont slope
within each subaperture. the average wavefront slope, over the subaperture, is measured. Sampling
errors can be reduced by either making the subapertures smaller or decreasing the integration time
for each sample. A tradeoff must therefore be made between photon noise effects and sampling

errors, the optimum condition being when these errors are equal [10:pg. 687).

Previous studies have shown that both of these sensors perform equally well under quasi-ideal
conditions, i.e. when imaging a point source and there is little or no atmospheric turbulence [10].
However, no studies have been performed comparing the sensors when using an extended source,
and the atmospheric turbulence is such that the correlation length, r,, is less than the subaperture
diameter. As the source becomes larger and r, smaller, the randomness of the wavefront phase
increases-to a point where the phase at one end of the subaperture is not reiated to the phase
at the other.end of the subaperture. As r, decreases, the phase will vary within the subaperture
diameter. Thus, the sensor does not “see” the true tilt, (called z-tilt), but instead “sees” the
average of the true tilt over the subaperture diameter, (called g or s tilt). Phase measurements

under these conditions will not reflect the true wavefront tiit.
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This thesis will examine the sensors under these conditions and develop mathematical models

to predict their performance.

1.4 Scope

The scope of this thesis will be to develop an expression to model the performance of each
of these sensors given the subaperture size, light level, source size and correlation length, r,. The

performance of the two sensor will be compared based upon these models.

1.5 Summary of Key Results

This analysis determines that, as expected, the Hartmann Wavefront Sensor and Shearing
Interferometer perform comparably for weak atmospheric turbulence, (large r,), and very smail
sources, or very bright sources. However, for strong atmospheric turbulence, extended sources and

photon limited conditions, the Hartmann Wavefront Sensor displays better performance.

1.6 Qverview

Chapter II briefly summarizes the theory involved with wavefront sensing. Chapter III ex-
amines the Hartmann-Shack Wavefront sensor. Performance models for the Hartmann WFS are
developed. Chapter [V discusses the Shearing Interferometer Wavefront sensor and performance
models are developed. Chapter V compares the sensors based upon the models developed in Chap-
ters III and IV. Results are presented that indicate which sensor performs the best under various
situations. Chapter VI gives some conclusions about the results and recommendations for further

study.
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II. Preliminaries

Before proceeding with an analysis of the errors resulting from wavefront measurements with
the Hartmann Wavefront sensor and the Shearing Interferometer, it will be useful to establish
how each sensor measures the wavefront. The Hartmann Wavefront sensor will be discussed in
Section 2.1 and the Shearing Interferometer in Section 2.2. Finally, Section 2.3 establishes some

definitions that will be used throughout this thesis.

2.1 Hartmann Wavefront Sensor

A Hartmann Wavefront sensor is composed of an array of subapertures which segment the
wavefront. In each subaperture is a lens which focuses the segmented wavefront onto an array of
photo detectors that determine the resulting spot positions. A single element of the lens array,
illustrated in Figure 1.4, is depicted in Figure 2.1. By use of simple geometry, we can see that the

focused spot centroid, z., is easily related to the tiit, , of the incoming optical wave:

tan(a) = % - a =tan™! (%) (2.1)

However, the question as to how the centroid of the intensity pattern is determined still

remains. Using a detector array like the one in Figure 2.2, Kane [12] determined that the centroid

Tilted
wave.

(@

Figure 2.1. One Subaperture of the Hartmann Sensor with (a) a Normally Incident Plane Wave
and (b) a Tilted Plane Wave.
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Figure 2.2. Model of Photo Detectors in Focal Plane of the Hartmann Sensor.

(a)

(b)

Figure 2.3. (a) Array of Spots from a Plane Wave. (b) Array of Spots from a Distorted Wave.

of the spot could be estimated using:

Ulze, ge) = Simi®ifiy

LL; P

(2.2)

where U(z., y.) is the estimate of the centroid in the z direction, z; is the center of the z,"‘ detector

pixel and P, ; is the number of photon events in the (i, j)** pixel. Note that Equation 2.2 looks very

much like a one dimensional centroid definition. Figures 2.1 and 2.2 represented one subaperture.

If an array of subapertures is considered, a pattern much like Figure 2.3 might be seen where each

spot results from one subaperture. Figure 2.3(a) represents the pattern that might be seen in the

detector plane of a Hartmann Sensor illuminated by a plane wave with no atmospheric distortion.

Figure 2.3(b) represents the same pattern resulting from a distorted wavefront.
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2.2 Shearing Interferometer

As discussed in Chapter I, the Shearing Interferometer takes a different approach to wavefront
sensing. Instead of spatially segmenting the wavefront, the Shearing Interferometer duplicates
the incident wavefront; shifts (shears) it; and interferes it with itself. Several types of Shearing
Interferometers exist [11]. For this thesis, a version of the AC Shearing Interferometer is considered-
which induces a temporal modulation on one of the sheared beams by use of a rotating diffraction
grating [11:pg. 183]. The temporal modulation causes the interference fringes to evolve with time in
the subaperture. The phase of the fringes can then be determined from the temporally modulated
wavefront. Exactly how the interference fringes are related to the wavefront distortion is discussed
in greater detail in Section 2.2.1. Section 2.2.2 describes how the phase can be derived from this
intensity pattern using Goodman’s Discrete Fourier Transform (DFT) 'I'}inge Estimator [8:pp. 494-

501].

2.2.1 Relationship Between Detected Intensily and Wavefront Tilt for the Shearing Inter-
ferometer Imperative to understanding how the Shearing Interferometer works is determining how
the interference pattern is related to the wavefront tilt. The incident wave, before being sheared,
can be expressed as:

Ui(z,y) = E(z, y)o*=v) (2.3)

where E(z, y) is the field from the source and ¢(z,y) is the phase distortion due to atmospheric
turbulence. The field from the source, E, is assumed to be complex, so that ¢(z,y) is only the
phase due to atmospheric distortion. Recall that the resulting intensity pattern will be sampled
temporally. Thus, it is reasonable to assume that the integration time for each sample will be short
enough such that Taylor's frozen turbulence hypothesis can be assumed [8:pg. 433]. Hence, ¢(z,y)

will be assumed to be deterministic. The two sheared wavefronts are written as:

Ui(z,y) = U; (-’L' + 92-’5, ) and Ua(z,yt) = U; (z - %,y) vt (2.4)
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where the exp(xst) designates that a temporal modulation has been applied to U using a rotating

grating. The total field in the detector plane is:
U, =U,+U, (2.5)
The intensity pattern in the detector plane of the Shearing Interferometer can be described as:
Ii(z,y,t) = (U.U3) (2.6)

where the a* indicates the complex conjugate of a and the t dependence results from the ac mod-

ulation applied to Uj. Substituting Equation 2.5 into Equation 2.6 and expanding gives:
Lz, u1) = (JUF) + (1Uaf') + (U U3 + UTU,) (2.7)
The first two terms are simply:
(1031 = (Ual?*) = (1B (@, )I*) = I(z.9) (2.8)
Therefore, substituting Equation 2.8 into Equation 2.7 we obtain:
Ii(z,y,t) = 2I(z,y) + (U1 U3 + UTU,) (2.9)
Now looking at the cross terms,

(U U} +UjU,) = <E (z + %‘— y) #(=+39) g (z - 925, y) e~ 19(s— A .9) st

+E* (z + %f-,y) e~19(z+4y)p (z - %.y) e”("*")""'"> (2.10)
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Which simplifies to:

(U U3 + UjUs) = (E (.-. 3 y) E (z -5 y) ¢ 1(#e= 4.0)-0{s+ .0 4]
+E (z + %‘-.y) E (z - %,y) el =-‘!"_')-*(’+‘!‘~)+~'1> (2.11)

Note that since ¢(z,y) is deterministic, the expected value operators can be pulled in to include

only the source field terms.

(U,U3 + UjU,) = <E (z + %, ) E (,,- - %, y)> e=l#(s=40.9)=4(=+ 82 5)+ut]

+ <E (z + %, y) E (z - %, y)>al*(*-‘5‘-v)-*(=+%‘-v)+~‘1 (2.12)

To simplify the notation, define:
A A
Ad(z,y,Az)=¢ (z - —23,:/) -¢ (z + —;-,y) (2.13)

Further, referencing Goodman [8:pg. 174], the mutual coherence function can be defined for this

case as:

[(Az,0)= <E‘ (z + %E,y) E (z - %,y)> (2.14)

Thus Equation 2.12 becomes:
(ULU3 + UjUs) = [(Az, 0)ela4=3.40)+wtl | po(Ag ()e~18H=0.85)+wi) 2.15)
1

Again referencing Goodman [8:pg. 180], for quasimonochromatic conditions, the mutual coherence
function can be written as:

T(Az, Ay) = J(Az, Ay) (2.16)




where J is the mutual intensity and can be found from the Van Cittert-Zernike Theorem. From

Van Cittert Zernike, we can relate J to the intensity distribution of the source, I,, by [8:pg. 209]:

3oz 09 = K [[ Licmer [:%—" (&5€ + )| dcdn (2.17)

where K is some, possibly complex, constant. Thus, J can be found by taking che Fourier Transform
of the intensity distribution of the source. It should be noted that a Shearing Interferometer will
consist of two sections. One will shear in the Az direction and the other in the Ay direction. As
both legs are otherwise identical, only the Az shear will be considered and Ay can be assumed to
be zero. Further note that for the situations of interest, the source distributions will be assumed
to be symmetric about the center of the source, (e.g. circular, rectangular or Gaussian). Thus by
Fourier Transform properties [6:Table 7-1], if f(z) and F(¢) are Fourier Transform pairs, and if
f(z) is real and even, then F({) will be real and even. Hence, for the situations of interest, J is

assumed to be real and

JI*=J=J (2-18)
Thus, Equation 2.15 can be written as:
(UiU; +UjUz) = J(Az,0) [ebasemasrtonl 4 coilakz.oe)ul]
= J(Az,0)[2cos(Ad(z,y, Az)+ wt)] (2.19)

Here, I will continue to follow Goodman and define the normalized mutual coherence function, or

degree of coherence function, as:

['(&z,Ay)

w(Az, Ay) = 7(0,0)

(2.20)
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Recall that:

J(0,0) = (|E (2, f*) = I(z,3) (2.21)

and Equation 2.20 can be written as:
J(Az,0) = I(z, y)u(Az,0) (2.22)
Substituting Equation 2.22 into Equation 2.19 yields:
(U\U3 + UlUy) = 2I(z, y)pu(Az,0) cos (Ad(z, y, Az) + wt) (2.23)

If the fields U, and U; are assumed to have equal amplitude, then the complex coherence factor
is equal to the visibility, V, of the fringes formed by the interference [8:pg. 163]. Equation 2.23 can

be substituted back into Equation 2.9 to yield an intensity pattern of:
Li(z,u,t) = 21(z,y) [1 + V cos (Ad(z, y, Az) + wt)] (2.24)

Equation 2.24 shows that the wavefront difference, A¢, is encoded in the phase of the ac modulated
fringe pattern. Therefore, to determine the wavefront tilt, the phase of the fringe pattern needs to

be determined. That process is discussed in Section 2.2.2.

2.2.2 Shearing Interferometer Detector Model The problem of retrieving the phase from an
ac signal, such as Equation 2.24, is a common one in communication systems [18]. One method is
the Discrete Fourier Transform (DFT) Estimator [20], [8:pp. 494-501]. Before describing the DFT
Estimator in detail, a discrete representation of the detector plane intensity pattern, Equation 2.24,

is needed. Equation 2.24 can be written as:

L(z,y,t) =21 [1 + Vcos (2?’1 + Ad(z,y, Az))] (2.25)
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where T is the temporal period of the fringe pattern and I is the intensity of each sheared beam in
the detector plane. The detector plane is segmented, (as for the Hartmann sensor), into discrete
;ietectors or subapertures. Here, it is assumed that each subaperture is small enough such that
I(z,y) is essentially constant across the subaperture. The intensity in each of these subapertures,
defined by W,(z,y), will be integrated for a time, , to form a vector of discrete photon count
values, see Figure 2.4. Through this count vector, and Goodman’s DFT F-inge Estimator, the

phase of the fringes can be determined.

Using Equation 2.25, the count vector, K(n), could be described as:

K(n)=a ﬁ I(z,y, Az, t)W,(z, y)Wi(t)dtdzdy (2.26)

where a is a proportionality constant that converts energy to photo events and is given by [8:Equation
9.1-9], W, is the aperture function defining the detector pixel and W; is the temporal windowing

function of each measurement interval. W,(z,y) and W; can be described by:

1 —$4<z<$and -$<y<t
Ws(z,y) = rect (;) rect (%) = : ? 2 g (2.27)
0 otherwise
t— 1 m-f<z<tn+}
Wi(t) = rect ( "') = : : (2.28)
0 otherwise

where d is the width of the detector and  is the integration time for each intensity measurement,

n. Substituting Equation 2.25 into Equation 2.26 yields:

K(n) =2la [ﬂ [1 +Vecos (%’“ + A(z, 9, Az))] W, (z, y)Wi(t)dtdzdy (2.29)




————enndie  {

Figure 2.4. Fringe Pattern being Sampled Temporally.

Equation 2.29 is evaluated in Appendix B and shown to be:

K(n) = 2IatA [1 +Vcos (35% + 2A'_¢(Az))] (2-30)
where A¢ was defined as:
AAd(Az) = ﬂ Ad(z,y, Az)W,(z, y)dzdy (2.31)
and the relationship:
r - N=p,-T (2.32)

was used where 7 is the integration time, N is the number of samples in the count vector, K(n), i.e.
0 < n < N-1, p, 1 the number of fringes embraced by the count vector and T is the period of the
fringe. Equation 2.30 describes the photon count vector. This is, of course, a discrete representation

of the fringe pattern. However, we still need to determine A¢ from this count vector.

The Shearing Interferometer can be set up such that p, is an integer number of fringes. The

phase difference, A9, can then be determined from K(n) using Goodman’s DFT fringe estimator.
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The DFT of Equation 2.30 is:

N-~-1
H(p) = -117 Y R(n)el@meiN) (2.33)

n=0

Define the real and imaginary components of the DFT evaluated at p, as:

N-1
Hp = Re{H(p)) = - Y K(n)con 22 (2.34)
n=0
_ 1= . 2xnp,
Hr = Im{H(p.)} = & 3" K(n)sin - (2.35)
n=0

Using Equation 2.30, the mean values of Equations 2.34 and 2.35 can be evaluated to be:

Fn = 2I‘;’”\zm@ﬁ) (2.36)
= 2I;ATVsin('A_¢) (2.37)

From which we can easily see that:
% = tan(A9) - A = tan! (.Z.‘;;) (2.38)

It should be noted that my model is slightly different from Goodman’s. I have assumed the
fringes are modulated and hence pass by a single detector. Goodman assumed that the fringes are
stationary and an array of detectors spatially sample the fringe pattern. However, Equation 2.30
matches Goodman’s Equation (9.4-2). Therefore, the statistics Goodman develops for his DFT

Estimator are valid for my model as well. These statistics will be used in Chapter IV.
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2.3 Definitions

2.3.1 :z-tilt z-iilt, G, is the wavefront slope, or tilt, over a subaperture. z-tilt is defined

as [24]:

i Az 2+y 9) 9z, y)W(z,y)dzdy
‘ $6[(z2 + ) W(z,y)dzdy

(2.39)

where W (z, y) defines the subaperture over which we are considering the wavefront tilt; £ and §
are unit vectors in orthogonal directions; k = 2x/), where ) is the optical wavelength; and ¢ is the

turbulence induced phase distortion.

2.3.2 g-tilt g-tilt, 0-:_., is the wavefront slope, or tilt, as measured by the Hartmann-Shack
Wavefront sensor. It is directly related to the instantaneous angular position of the centroid of the

intensity distribution in the focal plane of the Hartmann Sensor. g-tilt is defined as [24]:

i, V8.9 W(z,y) dzdy
) EfIW (z, y)f’ dzdy

(2.40)

where V is the gradient operator.

2.9.3 s-tilt s-tilt, §,, is the wavefront slope, or tilt, as measured by the Shearing Interfer-

ometer. §, is defined by:

5 - AEERLEW (2, ydady + g AUERADW (7, y)dzdy
2= kfJW(z,y)dzdy

(2.41)

where Az and Ay is the amount of shear in the z and y direction respectively. Note, in Equa-

tion 2.41, that as Az, Ay — 0 then g, — d. defined in Equation 2.40.
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2.3.4 Subaperture The Hartmann Wavefront sensor and the Shearing Interferometer mea-
sures the wavefront tilt over some finite area. That area is the subaperture which is defined as:

W(z,y) = rect (i) rect (g) = bomaseEs (2.42)

d
0 otherwise

LMY
8.
=9
|
wla
IN
<
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e,

With this subaperture definition, several items about Equations 2.39, 2.40 and 2.41 can be noted.

First, in Equation 2.40, since W(z, y) is real and only takes values of one or zero:

Wz, 9 = W(z,y) (2.43)

Further the denominators of Equations 2.39, 2.40 and 2.41 can be evaluated as:

1
Ek‘/ (z? + y?) W(z, y)dzdy = %, (2.44)
k [/ W(z,y)dzdy = kd® (2.45)
and
kﬂW(z,y)dzdy = kd?, (2.46)
respectively.

2.3.5 Normalized Shear In the Shearing Interferometer, the wavefront is sheared by a dis-

tance Az before being interfered with itself. Let the normalized shear be defined as:

s= — (2.47)

where r, is the atmospheric correlation length.
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III. Hartmann-Shack Wavefront Sensor

Two major sources of error have been assumed for the Hartmanp Wavefront Sensor. Those
two sources can be described by the error between g-tilt and z-tilt in the wavefront measurement
and the photon or shot noise effects. These two effects are independent and hence can simply be
added to give the total mean square (MS) error. For notational simplicity, the total MS error for

the Hartmann sensor will be defined as:
Ep = Egp + Enga (3.1)

where Egp is the MS error resulting from the detectors inability to accurately determine the true
centroid due to photon noise effects and Epgy, is the MS error due to the difference between the
true wav=froni tilt, z-tilt, and the tiit seen by the Hartmann Sensor. ¢-tilt. Ey will be manipulated

to have units of (radians/r, cell)?.

3.1 Shot Noise, Egp

An optical wave passing through a positive lens will be Fourier transformed at the lens’ back
focal plane. Thus, one would assume that an incident plane wave will form an impulse function at
the back focal plane. However, this would require the lens to have an infinite spatial bandwidth,
which is not the case. Hence we must take diffraction effects into account. Diffraction will result
in a plane wave being transformed to a finite width spot. Kane [12] has shown that the width of

this spot is related to the MS error in determining the spot centroid by:

nos ?
E((3 -2 = ok = (ﬁ) (3.2)

where z. is the true centroid location, Z. is the centroid estimate given by Equation 2.2, 7 is related

to the detector efficiency, N is the total photon count and o; is the RMS width of the intensity
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pattern in the detector plane. o; will be determined for two cases. Section 3.1.1 will determine the

RMS spos width for a point source and Section 3.1.2 will determine o; for an extended source.

3.1.1 RMS Spot Width for a Point Source The RMS spot width for a point source is needed
for two reasons. First, as indicated by Equation 3.2, the MS error in determining the spot centroid
is proportional to the RMS spot width. By finding the RMS width for a point source, the MS shot
noise error, due solely to diffraction, can be determined. Second, the intensity pattern resulting
from a point source also gives the diffraction limited Point Spread Function, (PSF), for a Hartmann

subaperture. This relationship will be used later in Section 3.1.2.

The diffraction pattern for a square lens of width d is given by (7: pg. 63]:

A% dz,\ . dy,
I(Zo,¥0) = (—A}Sz-smcz (,\iﬁ) sinc? (_/\_y}’_) (3.3)

where £, and y, are points in the focal plane and sinc(z) is defined as sinc(z) = sin(xz)/7z [6:pg.

45]. By defining:
dz, dy,
=220 d =22 3.4
=35 an V=3 (34)
and normalizing I to one at z,y = 0, Equation 3.3 can be written as:
I'(z,y) = sinc?(z)sinc?(y) (3.5)

which represents the normalized intensity pattern for a point source with no atmospheric distor-
tion. Analytical and numerical computations with a sinc? function can be difficult. To ease the
computations, the approach taken by Kane [12] is followed, and this distribution is approximated

by a normalized Gaussian function having the same width at the e~! points.

Examination of Figure 3.1(a) shows that I'(z) has a value of e=! at z = 0.5234. A normalized

Gaussian curve can be matched to the sinc® pattern by finding a variance, o2, that forces the
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Figure 3.1. Plot of sinc? and Gaussian function for % = 0.37%.

normalized Gaussian function to have a value of e~! at z = 0.5234. The Gaussian curve is given

by:
2
G(z,0) = —\/—21;;;exp <_%) (3.6)

and the normalized Gaussian function by:

2
G'(z.0)= g—g;—:%;— = exp (—%) 3.7

It can easily be shown that a variance of 2 = (0.37)? will match the two functions at the e~! points.
A normalized Gaussian function with such a variance is plotted in Figure 3.1(b) for comparison.
Accounting for the variable change in Equation 3.4, the approximated intensity pattern can be
expressed as:

2
(20, y0) = exp | ~—Z2F ¥ __ (3.8)

2(0.37)? (ll;,i)2

which also represents the diffraction limited PSF for the Hartmann subaperture:

To determine the shot noise error, Ey,, the RMS width of the approximated intensity dis-

tribution, described by Equation 3.8, needs to be determined. However, since Equation 3.8 is a

3-3




Gaussian function, the RMS width is simply its standard deviation; hence:

o = 0.375‘{—‘ (3.9)

This result is similar to one obtained by Kane [13] for a circular aperture.

3.1.2 RMS spot urdth due to Ertended Source The analysis in Section 3.1.1 gave the RMS
spot width for a point source. However, we are also interested in the effects due to an extended
source. The source intensity, I,, is modeled as an elliptical Gaussian distribution. This distribution

is expected to be formed from a laser guide star [5:pg 1722].

_+(b_")i] (3.10)

C2
I’(Cl f]) = Ioexp [— 203
where the constant b is added in to make the distribution “elliptical.” The intensity in the de-
tector plane is given by the convolution of the source intensity with the diffraction limited PSF,

(Equation 3.8):

z'3 + !/2 vexp —zfz + (b!/)z
2(037) (42) 2 (zm)5

3

Li(z',y) =exp |~ (3.11)

where the constants have been ignored. This is essentially the convolution of two 2-D Gaussian

functions, which can easily be evaluated to be:

Li(z',y) = exp | - il - y* (3.12)
‘ 2(o5+ (42)7) 2 (oh+ ()
where:
7y = (0.37)? (%ﬁ)z (3.13)

3-4




is the diffraction limited spot width for a square aperture, determined in Section 3.1.1, and the
factor of fi/:z converts the source RMS width, o,, from object space to image space. Thus we see
that the intensity distribution in the detector plane of the Hartmann sensor is Gaussian with MS
width equal to the sum of the diffraction limited MS width and the MS width of the source in

image space. Hence the RMS spot width is given by:

2 2
oi, =\[od, + (-ﬁz&) and oy, =4[o}, + (%‘;—’) (3.14)
and in general:
2 2
o? = (0.37) (f:i—’\) + (é) o] (3.15)

3.1.3 Mean Square Error Due to Finite Spot Size Recalling Equation 3.2, the RMS spot
width, given by Equation 3.14, is related to a centroid location MS error. Using simple geome-
try, (see Figure 3.2), this location MS error can be related to a MS error in the wavefront slope

measurement by:

_dz¢ - . i 2 _ i 2 _a:.—)z
A== "“‘2(fx) 7hs = (f:) ( ¥ (3.16)

where 0, is given by Equation 3.2, A4 is assumed to represent the changé in phase of the wavefront
over the subaperture and the factor of two accounts for an identical error in the y direction. Note
that o; has units of meters, as does f; and d (or meters per diameter). Thus Equation 3.16 has units
of (meter/diameter)?. To transform these units to (radians/r,cell)?, a multiplication by (kr,/d)?,

which has uiits of

kr0>2 _ ( radians)z (meter ? / diameter radians - diameter\ 2
d meter r, cell meter meter - r, cell !

(3.17)
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Figure 3.2. Diagram of a Hartmann Sensor Subaperture

is required. Thus

kr,\? 2 [kr,\? ,
(2) ae=3(F) 18
and the shot noise MS error for the Hartmann Wavefront Sensor can be defined as:
_ (ko \? 2 (kr,\? , (radians)?
5= () =5 (%) 4 (Far) (319)
Substituting in Equation 3.15 for ¢? and simplifying, we obtain:
2 (N [(Rra\? 5 (03753}
wm =7 (7) [(T) 2+ (%) (3.20)

For analysis of arbitrary subaperture sizes and seeing conditions, it is important to note that the
second term in Equation 3.20 is only valid for d/r, < 1, where r, is Fried’s coherence diameter [2].
The term 0.37f;)/d represents the diffraction limited spot size in the detector plane. However,
as the diameter, d, gets larger, the spot size does not shrink in a proportional way—instead, it is

limited by the atmospheric correlation length, r, (8:pp. 431-432]. Thus, for d/r, > 1, the d in the
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second term needs to be replaced by a r,. Equation 3.20 can more accurately be written as:

JONCORIIC DN BT PS

EHP = 2 2 3 (3.21)
#(4) [(!u) o2 + (0.37113) ] for £ > 1
Performing algebraic simplification, recalling that £ = 2x/A, Equation 3.21 becomes:
2882 [(2 . %)? 4+ (0.37)? () for £ <1
Eny &Lj[(, 2) ? (%)) . 52
2022 [(2+ - 3)" + 037 for £ >1

Note that o,/z is equivalent to the angular size of the source, while A/r, is the angular resolution
limit induced by the atmosphere. The ratio of the angular size of the source to the angular resolution

of the unaided optical system is defined by:

ﬂE-Zz--— (3.23)

Using Equation 3.23, Equation 3.22 can be written as:

25 [62 + 037 (3)7] (L"’—'c"e“ﬂ!)2 for 4 < 1
2022 [ﬂ’ + (0.37)’] (E‘-i!c%ﬁg)’ T ford>1

Enp = (3.24)

3.2 Mean Square Error between z-tilt and g-till, Eg,,

In this section, the MS error resulting from the error between the true wavefront tilt, 5,,
and the wavefront tilt “seen” by the subaperture is computed using a method similar to that of
Yura and Tavis [24). The Hartmann sensor averages the wavefront tilt, V4, over the subaperture.
In doing so, the phase slope is approximated in a piecewise linear fashion. As can be seen from
Figure 3.3(a), this is a good approximation when r, is large. However, as r, decreases, the averaged

wavefront tilt diverges from the true wavefront tilt, as can be seen from Figure 3.3(b).

37




Large § Srnaily,
Figure 3.3. Hartmann Sensor with (a) large r, and (b) small r,

The MS error between the 2-tilt and the estimated tilt can be expressed as [24]:

<(5, - é,)’) (3.25)

where ; is the true wavefront tilt, called 2-tilt, over the entire aperture and §; is the estimate of
this tilt. This estimate, f;, is assumed to be equal to the instantaneous angular position of the
centroid, 5;, which is equivalent to the o in Figure 3.2. 5:, is commonly called the g-tilt. Expanding

Equation 3.25, we obtain:

((#-0)") = (® - 205+ ) (3.26)

Recall that 6; and 9: were defined in Section 2.3. These definitions will be used to evaluate each of

these three terms individually.

Using Equations 2.39, 2.40, 2.44 and 2.45, the cross correlation between g-tilt and z-tilt,

<0-; 0-'¢> can be expressed as:
-~ = 12 . R
(0: '0c> = e < [ (z-2+y-9)W(z,y)é(z, y)dzdy - ] W(z, y)V¢(z,y)dzdy> (3.27)
Using integration by parts, this becomes:

~ - 12 . .
(5.-0) = g ([ @12+ ) Wiz, mer, o

-(—IV:W(32,W)¢(=2,yz)d=2dw)> (3.28)
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Using the definition of the gradient operator in Equation A.3, performing the dot product and

simplifying yields:

(5. 5.,) = %(W‘lw(zhyl)¢(3hyl)¢(3211h)

x [6 (zz - g) -6 (zz + ;—)] rect (.de) dzldzgdyldyg> (3.29)

since all terms in Equation 3.29 are deterministic ezcept ¢, the expected value operator can be

taken inside the integrals to yield:

(0 -0.) = pozs [l =Wz ) (0lzr, m)s(en, )

x [6 (z, - g) .y (z, + g)] rect (%) dzydzadpdy:  (3.30)

An expression for the correlation function, (¢(z1, ¥1)é(z2, ¥3)), i8 needed to continue. It is shown
in Appendix A.l, that, using the Kolmogorov structure function as described by Wallner [21:pg.

1774}:

(3.31)

the correlation function can be expressed as:

s/3

- 2 - 2
\/(:-, z1)" + (12— n) ) +T4(0,0) (3.32)

To

(6(z1, 1)b(zn, 32)) = — o8 (

2

Substitution of Equation 3.32 into Equation 3.30 yields:

5/3
(6 -8.) = _f_} 2 W(zy, 1) (—%s.ss ( iz - ”)::' (v2 = ”‘)2) +T4(0, 0))

d d
X [6 (22 - 5) -6 (22 + 5)] rect (%) dzdz,dy dys (3.33)
Using the sifting property of delta functions to integrate over z,, making the variable substitutions
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given by Equations A.17 and A.18 and using Fourier Transform analysis, Equation 3.33 becomes:

5/3
= =\ _ 24 |688 [ Ay z d ?
<0g - 0c> = ﬁ Wﬂzltn (T) rect (T) (‘/(E + 21) + (Ay)z) dz;dAy

5/3

_: 3/83 zytri (%) rect (2—1) (\/(g - ’l)2 + (Av)’) dz)dAy| (3.34)

Substituting in for the definitions of the tri and rect functions, setting the limits on the integrals

using these definitions and performing numerical integration, Equation 3.34 can be expressed as:

(3.35)

Recalling the definition of é;, Equation 2.39, and also recalling Equation 2.44, the mean

square value of the z-tilt, < §2 >, can be written as:

<"7> ( ,,44) < ( I (z-2+y-9)é(z,y)W(=, y)dzdu) 2> (3.36)

Using a very similar analysis as that used to determine <0~. 0:), it is shown in Appendix A.2 that

Equation 3.36, becomes:

13.6183
g2\ = 0V
(7) - 51

Likewise, the MS value of g-tilt, < 53 > can be expressed using Equations 2.40 and 2.45 as:

GE <($ [ vst=. y)W(z,y)dzdy)2> (338)

Equation 3.38 is also evaluated in Appendix A.3, using a similar approach, and becomes:

12.803
7 _
< > s/3‘11/3 (3.39)
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9.2.1 Combining < 6 >, < 8 > and < §;-6, > to Find Eg,, Substituting Equations 3.35,

3.37 and 3.39 into Equation 3.26, will result in:

-~  =\?2 0.235
<(9t —9c) > = W (3.40)

which has the same functional dependence as a similar quantity determined by Yura and Tavis [24]

for a circular aperture. Equation 3.40 can also be written as:

<(e‘, - ic)2> =0.235 (%) - (;-i-;)z (3.41)

Equation 3.41 has units of dimensionless slope (meters over meters). However, the (kr,)? term has

units of:

(kro)? = (""ﬁ"‘“")z(""’“’“‘)2 - (““ﬁ"“")2 (3.42)

meter r, cell r, cell

Hence, the product, < (§; — 8.)* > (kr,)? will have units of (radians/r, cell)?, which is desired.

Therefore, define:

Eng = <(a‘, - o‘c)2> (kro)? = 0.235 (ri)-* (’:::'l‘l’)z (3.43)

[

3.2.2 Total Hartmann Mean Square Error Combining Equations 3.24 and 3.43 will give the
total MS error for the Hartmann Sensor due to both shot noise and the error between g-tilt and

z-tilt.

5 - 285 (52 4 (0.37) (-a)]+0235(°) (radinge )2 for L <1 040

2222 (8 +(0.37)°] +0.235 (& ) (radisps)® for £>1

Some observations regarding Equation 3.44 are in order. First, this result shows that some error

is inherent, even for “perfect” seeing conditions, i.e. d/r, € 1. That error is determined by the
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amount of light, N, and the diffraction limited spot size in the detector plane. Second, the shot
noise portion of the error is strongly dependent on the angular size of the source, 3. Hence, as
the source becomes larger, i.e. an artificial guide star as opposed to a natural star, the error will

increase. And third, the error is dependent on the seeing conditions, given by the factor d/r,.
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IV. Shearing Interferometer Wavefront Sensor

As for the Hartmann Wavefront Sensor, two major sources of error will be examined for the
Shearing Interferometer. Those two sources can be described by the error between s-tilt and z-tilt
in the wavefront measurement and the shot noise effects. These two effects are independent and
hence can simply be added to give the total mean square (MS) error. For notation simplicity, the

total MS error for the Shearing Interferometer will be defined as:
Es =Esp + Es,: (4.1)

Egp is the MS error due to the photon, or shot, noise effects. Es,; is the MS error due to the
difference hetween the true wavefront tilt, and the tilt “seen” by the Shearing Interferometer. A
similar argument as given in Section 3.2 applies. To match units with the Hartmann analysis,
Es will be manipulated to have units of (radians/r,cell)>. An expression for Es, is derived in

Section 4.1. Likewise, an expression for Es,; is derived in Section 4.2.

4.1 Shot Noise, Esp

It was shown in Chapter II that the count vector statistics for our AC lateral Shearing
Interferometer model match those of Goodman’s DFT Fringe Estimator. Thus, the result derived

by Goodman [8] for the RMS error in estimating A¢ due to shot noise can be used for our model

2 1 .
Taske =\ BN R Y 2

where a is the quantum efficiency of the detector, A is the area of the detector element, r is

as well:

the integration time of the measurement, J; is the intensity of each sheared beam and V is the
visibility. The notation A¢|, indicates this is the RMS error for the z shear section of the Shearing

Interferometer.
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It is important to relate I, and [3 to the incident beam intensity. The light coming into the
Shearing Interferometer must be split at least twice. The first split divides the light between the
¢ and y shear sections of the Shearing Interferometer. The second beam splitter divides the light
mnto two beams which are sheared and interfered. Assuming 50-50 beam splitters, the individual

beam intensities can be described as:

L+h= (43)

gl
i
fenl
1
L]
|
N~

Since the two beam intensities are equal, the visibility is equal to the complex coherence factor [8:pg.
163). The complex coherence factor for a Gaussian source of RMS width o, was found in Chapter I1I

to be:

2
2n0o;

o)’ (Az? + Ay’)] (4.4)

where Az and Ay, are the separations of the points in the x and y direction. Therefore Equation 4.4

p12(Az, Ay) = exp [—w

can be used to write the visibility as a function of d, the aperture size, and s = Az/r,, the

normalized shear.

1o,

V(s, o) = exp [-2 (7\:)2(31‘0)2] (4.5)

where ) is the mean optical wavelength and z is the distance from the source. Substituting Equa-

tions 4.3 and 4.5 into Equation 4.2 yields:

[ 4 1
Tagiz = . > (46
ol aATNT oo [_2 (%22)? (sr,)’] )

which has units of radians. To effectively compare this with the results for the Hartmann sensor,

the units on Equation 4.6 need to be converted to (radians/r,cell)?. First, Equation 4.6 needs to be
converted to a slope. This is done by dividing Equation 4.6 by Az, which gives the phase change,

(in radians) per amount of shear, (in meters). Further, squaring Equation 4.6, to make it a MS
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error instead of a RMS error, produces:

"2A¢|:(317'o) 4 w0, \2 .
Az NighzZ P [4 ('7\7‘) ("")2] (4.7)

where N¢os = aArNI, which represents the total average photon count over the aperture for each
integration time. N;, is comparable to N used for the Hartmann sensor. Equation 4.7 has units
of (radians/meter)?. Thus, by dividing by 1/r2 (or effectively multiplying by r3), which has units

of (meters/r, cell)?, the desired units will be obtained:

2 2 . 2
Tagiz(8:To)Ts 4 x0,\2 2 (radmns)

Az? T NeotAz? exp |4 (7\2_) (aro) r, cell (4.8)
In Equations 4.6—4.8, the |z designates that this is the error in the z direction. If we assume that an

identical error will occur in the y shear section of the Shearing Interferometer, then the total er.or

will be twice that indicated in Equation 4.8. Further, recalling that the s = Az/r,, Equation 4.8

becomes:
2
oaelsimo) . 4 70, \2 2
o = 2Nm82 exp [4 ( ;e ) (srs) (4.9)

Thus, the MS error due to the shot noise can now be defined as:

_ah4(s,10) 8 0\ 2 radians  ?
Esp = e = Ng“sz exp 4(-,-\-;') (31‘0)2 m— (4.10)

The terms in the exponent can be rearranged to yield:
_ 8 2 (TsTo\2 2
Esp = 3= oxp [(2«) (7)'\') s (4.11)
Recalling Equation 3.23. Equation 4.11 becomes:

. 2
radlans) (4.12)

- ___8_ 2922
Esp = exp [(21r) Bs ] ( el

Niors?
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4.2 Mean Square Error belween :=-tilt and s-tilt, Eg,,

This section examines the second of the two major sources of error in the Shearing Interfer-
ometer. As for the Hartmann Wavefront Sensor, we are interested in the MS error between the

true tilt and the tilt estimate given by the sensor:

<(o‘. - é,)’) (4.13)

where 5; is the true wavefront tilt over the aperture and ét is its estimate. In the Hartmann Sensor,
it was assumed that f; = 9'.,, where &, is the instantaneous angular position of the centroid in the
Hartmann subaperture. A similar approach will be taken for the Shearing Interfemméter. The
estimate of the wavefront tilt, §, will be assumed to be equivalent to @, which is the tilt measured

by the Shearing Interferometer. Expanding Equation 4.13 then yields:

- - 2 - -
The mean square value of f; was evaluated in Section 3.2 and found to be:

() = 13.6183 (4.15)

T p2e33qy/3

The terms in Equation 4.14 that remain to be evaluated are the mean square value of s-tilt, < é? >,

and the cross—correlation between z-tilt and s-tilt, < 0: -0: >.

Using Equations 2.41 and 2.46, the mean square value of s-tilt, < 5‘," >, can be expressed as:

(o’) = <(k1—d)2 (e ﬂ AL('%Z’—QﬂW(z,y)dzdyw ﬂ %L%A—z)-W(z,y)dzdy>2> (4.16)
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It is shown in Appendix B.2 that evaluating Equation 4.16 yields:

2
<9?> = WW(A¢(=1.yl,Az)Ad’(tz.w,Az)) W(z\, )W (22, r)dz1dpndzadys  (4.17)

An expression for (A¢(z1, y1, Az)A¢(23, 12, Az)) is therefore needed. Recalling the definition for
A¢:

Ab(z,5,22) = 8z - Z20) 8z + Z,0) (418)

and using the structure function given by Equation 3.32, Equation 4.18 becomes:

3 3
6.88 3 >3
i 2 2 2 2
< > E2d4Az? S/aW [\/(32-31'*'5»3) +-n) +V(@-n1-82) + (12 -w)

‘2\/("-'2 -2)’ + (2 - yl)zj]

xrect (1;1) rect ( ;) rect (‘Z ) rect ( d) dzidyidzady, (4.19)

A variable substitution can be made so that the integral in Equation 4.19 will be in dimensionless
form. This includes a substitution of s = Az/r,, which is defined as the normalized shear. Using

these substitutions and Fourier Transform analysis, Appendix B shows that Equation 4.19 becomes:

<07> 0.13544f, (s%) (4.20)

g k2di/3gd/3

where f, (s22) is defined to be:

2 2 3
fo(z)= @) /_2 /.2‘2 ~ |ag]) (2~ |AW)) “((Ai + 2 + av?|*

+]((ag - 22)" + a9?

3
‘_2lae?+ A¢2|*] dagday  (4.21)

and is plotted in Figure 4.1. Equation 4.20 is the simplest analytical solution than can be obtained.

Note that any numerical solutions of Equation 4.21 must be for a given value of ﬂ'r_,' Also, note
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Figure 4.1. Plot of f, (z).

that from Equation 2.47

' = % (4.22)

dfre

Hence, Equation 4.20 will be solved for a family of 37’;.- values from, 0 < 27’-,7 <1/2, as it is
unreasonable to assume that the wavefronts would be sheared more than one half the subaperture

diameter.

Attention is now turned to the middle term of Equation 4.14, (5, . 5,> By use of Equa-

tions 2.39, 2.41, 2.44 and 2.46, this can be expressed as:

(5.4) = <[éfz¢<z.y)W(z,y)dzdy +_._fy¢(z,y)W(z,y)d=dy]

1
[ Ad(z,y, Az)W (z,y)dzdy | . [ Ad(z,y, Ay)W(z,y)dzdy >
' [" Azkd ty Agkd (4.23)

Using a very similar analysis as that used to determine (0'}'>, Equation 4.23 is evaluated in Ap-

pendix B.3 and is found to be:

<- 0—-> - 0.406325f. (%)
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Figure 4.2. Plot of f. (z).

where f. (sZ3) is defined as:

2 2
fo(@) =z / 2 /_ A£(2- 1ag) 2 - lav)

x “(A{ +2)% + szl* - I(A{ -2+ A:/;’Ii] dAEdAY (4.25)

and is plotted in Figure 4.2. Equation 4.24 is the simplest analytical form of an expression for the
cross correlation between :z-tilt and s-tilt. To proceed from here, a value for ﬂ'-r—.-, the normalized

shear, must be specified and Equation 4.25 solved numerically.

4.2.1 Mean Square Error Between.z-tilt and s-tilt, Es,, Recalling Equation 4.14, the total
MS error due to the difference between z-tilt and s-tilt can be obtained by combining Equa-

tions 4.15, 4.20 and 4.24. Doing so yields:

N 13.6183  2-0.406325f.(s%2)  0.13544f, (sZe
<( 0) > f (sd) f (34) (4-26)

T enlan T sl E3d1/3e33
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where f, (s%) and f. (sfdﬂ) are defined by Equations 4.21 and 4.25 respectively. Note that Equa-

tion 4.26 can be re-written as:

< (6 -4.) 2> = [13.6183 - 0.8126¢. (s%) +0.1354, (s%)] (ri)_* (b—f_-) ’ (4.27)

which gives the MS error in terms of slope, (meters/meters). Therefore, as in Section 3.2.1, to

convert the units to (radians/r, cell)?, a multiplication of (kr,)? is required. Thus:

Eses = <(a‘, - o’,)"> (kro)? = [13.6183- 0.8126f. (s%’) +0.1354f, (s%.)] (i)-% (ra.dians)z

To ro cell

(4.28)

4.8 Total Shearing Mean Square Error

Using Equations 4.1, 4.12 and 4.28, the total MS error for the Shearing Interferometer can

be described as:

Eg =

exp [(27)28%5%]+ [13.6183 - 08126, (s ) +0.13545, (s3] ( 4 ) -4 (radians) 2

Nior 52 d To r, cell

(4.29)
Some comments about this result are in order. First, as in Equation 3.44, Equation 4.29 shows
that some error is inherent even for “perfect” seeing conditions, d/r, < 1. This minimum error is
determined by the total photon count, N, and the shear, s. Figures 4.1 and 4.2 show that the
fe(s%) and f, (s%) change very little over the range of z/— values we are interested in. Thus

the MS error between s-tilt and z-tilt is only weakly dependent on the shear.
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V. Comparison of Hartmann and Shearing Wavefront Sensors

The total error variance for the Hartmann Wavefront Sensor, found in Chapter III, is:

93n)? [ﬂ’ +(037 ()" +0.235 (5)'* (!-M!!c%ﬁﬂ)2 for £ <1

Eg =
: 22 (57 + (0.37)°] +0.235 () (radiape)” for &> 1

(5.1)

Likewise, the total error variance for the Shearing Interferometer, found in Chapter IV, is:

N . r, cell
(5.2)

Es= % exp [(27)?8%57] + [13.6183 - 0.8126f, (s:;-) +0.1354f, (s%)] ( d ) - ( "di"“’) ’

Recall that the N in Equations 5.1 and 5.2 represents the total number of photon events within the
subaperture during the integration time. The ratio of the angular size of the source to the angular

resolution of the optical system, limited by the atmosphere, was defined in Equation 3.23 to be:

Zs
ﬂsi=%.ff (5.3)

The normalized shear, s, was defined as the ratio of the absolute shear, Az, to the atmospheric
correlation length, r,.

(5.4)

The functions f, (sZ) and f. (s%) are given by Equations 4.21 and 4.25 respectively and are
plotted in Figures 4.1 and 4.2, respectively. And, finally, d/r, is the ratio of the subaperture

diameter to the atmospheric correlation length.

Several items about Equations 5.1 and 5.2 should be noted. First, some error is inherent in
wavefront measurements, even for “perfect” seeing conditions, i.e. d/r, € 1. This minimum error is
determined by the total photon count. N, and the source size, 3. Second, examination of Figure 5.8

reveals that the term [13.6183 - 0.8126f, (s-':d‘-) +0.1354f, (35;-)] is approximately equal to 0.235
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for most values of 27’;— of interest. Hence, the error due to the difference between g-z-tilt and s-z-
tilt, given by the second term in each equation, is relatively the same for both wavefront sensors.
Third, due to the source size term in the exponent of Equation 5.2, the Shearing Interferometer is

much more sensitive to changes in the source size than is the Hartmann Wavefront sensor.

The total RMS error for the Hartmann Wavefront Sensor and Shearing Interferometer is
plotted in Figure 5.1 versus d/r, for ¥V = 2; s = 0.1, 0.2, 0.3, 0.4 and 0.5; and 8 = 0.01, 0.10, 0.50
and 1.00. Looking first at the § = 0.01 plot, recall that this source size represents a very small
(almost a point) source. Notice that the Hartmann Sensor performance improves significantly as
dfr, increases, for d/r, < 1 and then flattens out for further increases in d/r,. This results from
the spot size in the detector plane of the Hartmann being inversely proportional to the subaperture
diameter. As the spot size decreases. the Hartmann sensor determines the centroid more accurately,
and hence the shot noise decreases. However, for d/r, > 1, the spot size is limited by r, instead of d
and no further reduction in the spot size occurs. We also notice that the RMS error for the Shearing
Interferometer decreases with increasing shear. As the shear increases, the phase difference will also
increase while the noise in the measurement will remain relatively the same. Hence, the signal to
noise ratio will increase causing the shot noise portion of the error to decrease. This is represented

by the s=2 in the first term of Equation 5.2.

Now, looking at the § = 0.10 plot, we see the same trends observed for the 8 = 0.01 plot.
However, close examination shows that all the curves have been shifted up slightly, indicating
that the RMS error increases for increasing source size. This i8 more easily seen in the plots for
B = 0.5 and 1.00. However, in these last two plots, we also notice that the consistent decrease in
RMS error for increasing shear no longer occurs. Instead, error decreases until some “optimum”
shear is reached and then begins to increase again. This results from the Shearing Interferometer’s

sensitivity to the fringe visibility, which is inversely proportional to the size of the source.

The total RMS error is again plotted in Figures 5.2 and 5.3 for the same conditions as above
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except for ¥V = 5 and 10, respectively. The same trends as mentioned in the above paragraphs are
noticed. However, we see that the total RMS error decreases with increasing photon count since

the shot noise error is inversely proportional to N.

Figure 5.4 is a plot of the RMS error for N = co. This plot represents the portion of the
total RMS error due only to the difference between g-tilt and z-tilt for the Hartmann Sensor and
the difference between s-tilt and =-tilt for the Shearing Interferometer. We can clearly see that, in

the absence of shot noise effects. the two sensors show nearly identical performance.

Likewise, Figures 5.5-5.7 represent only the shot noise portion of the total error for the
Hartmann and Shearing Interferometer—given by the first term in Equations 5.1 and 5.2 respectively.
Comparing Figure 5.5 with Figure 5.1 we see that they are nearly identical, indicating that shot
noise effects are the dominate noise source for both the Hartmann Wavefront Sensor and the
Shearing Interferometer, for the photon count values examined. This same conclusion can be

drawn by comparing Figures 5.6 and 5.2; and Figures 5.7 and 5.3.

As mentioned above, there seems to be some “optimum” shear, at which the RMS error for
the Shearing Interferometer is a minimum. Since Figures 5.5-5.7 indicate that the majority of the
error results from the shot noise component, that term will be examined to determine the optimum
shear. Recalling Equation 4.12, the shot noise component of the total Shearing MS error; taking
its derivative with respect to s; setting it equal to zero and solving for s gives the optimum shear
as a function of source size:

1
Sopt = Y] (5.5)

Hence, as expected, the optimum shear is inversely proportional to the source size. Equation 5.5

is plotted in Figure 5.9.

5-3




A Jonqg SWYH "1°G 2By

J

"3 S BOPSeS P CUSARY
9
T |80
"”“”u 100=¢ w
N
_.e-..os.li/ m.
ANNN\N ~ m
OO .
AN A:Laq.
N \l's




g = N 10} °4/p 8A JouIg SINY ‘TG 2By

001=d
S*N

9
p . ‘
v 85 ¢ 3 ) L
W,
0= 0w
v o= Oureeyg oto=9d
xu”z}.ﬁ// s=N
.o....?:l..or/
NN >
ALY N
\ \ie

2043 gy Buteeys PUS LUIRULNL

{Se

L | 14 | 4 L X3 [ ]

UL,

owclang 0s0=¢
v0 =9 'Byseyg c=N
£0 = Suweug

.~.o...u.elo// ]
1 0= ¢ Bareeys,

5-5




01 = N I0j °4/p sa 10113 SNY '¢'¢ 2By

001 =1 os0=9
o1=N

\ . xuz....\ ¢..

10 =3 Bupeeyg
U3 OWG Pie GRSART, oot “3ou3 oo boes pS wRaRRY '
9 %
). A L4 _
@ v e ¢ ¢ s 4 e o, Se v e & ez ¢ e 4 w0 o,
ot1o=d 100=¢
o.o..sa.s.! or=N m oo-..us..zo o1 =N w
vo.-§ M 'e...-s!o/ h
3 3 ]
N 3 |
3 A‘*:G.. 3 \\\ u-r—q.
go=e \ 8 n.o..séla\ g
20 =9 Bupewyg 20=9 Sumeus
10 =2 Bupeeug to=e

173 Gvnd Buyweus pus uusunsey 3513 OV BOSRID U TIVUARY]

5-6




00 = N 10§ %4/p 8A Io11g SN VG 2anBig

9
4
9 o v gt ¢ o2 r 9 4 90
UUIPWIL 4
so="
¥0 =9 Duyeeyg
o= Gueeyg
goe="
o=
3
001 =9
NaN
soarg pyey Dupeeyg pue uuwuLey
9
P 4
9 gy v o% ¢ @82 2 91 4 §0
UISUNIoH, 94
oo=e
0 =9 ‘Supeeyg
€0 =9 Bupesyg
Z0=9
o=
oro=9g
o=N

K

1190 % puwpey ‘ou3 Sy

20413 oMY OULReYE PUS ULNUILNEY

oo ¥ mumpey o3 S

-

{2=e

$0
v

-lo

10

90 = Supseyg.
0= Supeeyg
0~ Bupweyg
zo=9
Lo=9

0so=d
maN

Heo % mmpey ‘sou3 gyed

80
i

-

g0 =9 ‘Supeeyg
0 =9 Bupeeyg
€0 = Bupesyg
Zo=
1o=e

10o0=9¢

MmN

-

g

fleo % sumpmy Jou3 S

1043 gy Bueys pue wsuny

5-7




7 = N 10} °4/p sa 10117 3sI0N 104G SIWY ‘G G 2anBr]

9

. p . »

gy v 3¢ ¢ 6% 3 ¢ 890

001=d

I*N
uueunw|

0= Bureeyg 1

20~ 'Bupee
10 =9 ‘Buumel

—~

10133 SWY smoN Joug Supesug pue uurwpe)y

9
P
Q.v m o.‘n m n.«u 2 o ] o..o
Uy
go="" i o1o=9¢
y0= 9 Cuuveus =N
] €0 =9 Sumeyg
zo=v’
1o=9’
A\ N Y
\\ A
\ \|
A J

103 SNy esoN YOUS Buresyg pus LuBwIRY

{aoe

4|

$1i ] 8o 9

wewye oso=¢d

"= on3 S SWION 1005 BUIReUS PUW UCURIAH

{ae

o.v v n.n n

S0=% ?_..2 swnu
¥0 =9 'Sureeys
€0~v us_-zm
b 20=9 ?_a.g
to=-9 9_.:2

///// N

LARAY

ML

\\

fA/
\ -\

=

o0 ¥ pumpey Jou3 S

70113 ST S9ION 10US BUINSUS U VUSWRH

5-8




¢ = N 10} °4/p sA 1011y astoN 104G SINY "9'G dnBiyg

9
c..v ¥ 9c 1 nﬂ m a«. t n<o
001~9

uURwIeH $*N

Y0 =0 'Sumeyg

E €0~ 'Buresug {
Zo=s’
10 = Buee

\

" A " A n . A P "

10113 SNY #WON 10us Bupeeyg pur LunwBH

),
o~
~
L
-
-
w0
o

dAP

114 ’

3...?_:. .

0= 8 ‘Bunveys oro=¢
co=9 ac:-o...m =N
20=19 'Buuwe

I 10 = » 'Bupres! 1

—4— AV

1\ \

1 \]

lieo ¢ pumpwy ‘1043 SWH

e

“35113 SWU $%I0N 1008 Buieeus pus UUEWILEH

o

1013 SWY omON 1ous Bupreys pus uurwe

9
_ _ P . .
sy se ¢ sz T e ) w0 o,
uuBuneH,
60 =9 Buyeeyg 100=9¢
v0~9 ‘Bupesus S=N
€0 =8 ‘Gusveys w
20 =3 'Buseey
._.a...osazm,/ 1 m_
\ ~ m
\\u Y A
\ N m
, Voo
g
1

10153 SWU 98I0N 10ys Buueeys pue uuewuey

5-9



01 = N 0] °4/p sA Jou1g 36t0N 0UyS SWY "L'G 2inBiyg

%

|4
9_ 9y » et € 9T 3 w1 1 90
001 =¢
UL, ol=N

B\
X,

~

\

100 % puepey 1013 SN

10153 SINY #910N 10uS Burreeys pue uuswiney

uuswe, oro=d
m.c...?.!.”/ ol=N
v.Ol..a.!c!.j

h 1 //

T /
£0 =3 ‘Bumeyg
20=9'6u
10=8'Ba

£~

oo % puwpey 'au3 swH

10113 SN #9ION 10U Bureeys pue LWL

9
P .
4 v 1 4 8¢ m o«u Z 9t § n.o !
os'o=9
o”o...u?_a.i/ or=N
1

20= 9 6upeeyg
1o=s But

‘do1

101133 SNY #810N 10ug Bunseys pus vurueH

wewueyy 100=9d

g 0=9 'Bujres or=N
yo=e .giﬁ/
'

A 1

/
//

n.c...?__!a\
20="Bup
10=9"6ut

JOLI3 SN $WON 10US BUNOUS PUS CUSURNT]

5-10




09
0.8
0.7
0.6

0.4

{3)

0.2t

Qs———v‘

Figure 5.8. Plot of 13.6183 — 0.8126f. (z) + 0.1354f, (z).
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Figure 5.9. Plot of Optimum Shear, s, vs. Source Size, £.
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VI. Conclusions and Recommendations

6.1 Conclusions

This research has conducted an analysis of the mean square error resulting from wavefront
measurements obtained from the Hartmann Wavefront Sensor and the Shearing Interferometer
when viewing extended objects through a turbulent atmosphere. Two sources of error were con-
sidered: the shot noise error and the g-z-tilt and s-z-tilt error. The shot noise error resuits from
inaccuracies in determining the spot centroid, for the Hartmann Sensor, and the phase of the fringe
pattern, for the Shearing Interferometer. Likewise, the g-z-tilt error and the s-z-tilt error results
from the difference between the true wavefront tilt and the averaged wavefront tilt over the finite

sized subaperture.

Results indicated that the major contributor to the total error, for the photon counts ex-
amined, was the shot noise effects. The shot noise error had a strong depend.uce on the source
size, in addition to dependencies on the photon count and amount of shear, (for the Shearing In-
terferometer). When the shot noise error was not considered, the two detectors performed nearly

identically.

However, for the more realistic—photon limited—cases, the Hartmann Wavefront sensor showed
much better error performance than the Shearing Interferometer. The only exceptions were for small

source sizes and small d/r,.

6.2 Recommendations for Further Study

The model used for the Shearing Interferometer encoded the wavefront tilt in the phase of
an ac modulated fringe pattern. Goodman’s DFT Fringe Estimator was then used to extract the
phase from this fringe pattern. The results indicate that the major error resulted from this portion
of the wavefront detection process. However, there are versions of the Shearing Interferometer

that do not use ac modulation and fringe detection [11]. It is therefore recommended that the
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analysis presented in Chapter IV be repeated for one of these other configurations, without the
ac modulation. This would establish whether the unusually large error is a result of the shearing

process or the ac modulation and fringe detection process.

6-2




Appendix A. Derivation Details for Hartmann Wavefront Sensor

This appendix provides details of the derivations presented in Chapter III.

A.1 Derivation of Cross Correlation between g-tilt and z-Tilt, <5, ic>

From Equation 3.27

(o‘, -ol) = % < [/ (z-2+y-§)W(z,y)é(z, y)dzdy - [ W(z,y)V¢(z,y)dzdy> (A.1)

This second integral is very similar to one evaluated by Welsh and Gardner [23:pg. 1914] using

integration by parts. This approach yields:

- = 12 . .
<9: -9c> =g <ﬂ(=12 + 919) W(z1, 11)é(21, 11 )dz1dy

(= [ 7w enmstanmidzrinn) ) (A2)

Note that in Equation A.2, dummy variables, denoted by subscripts 1 or 2, are used to indicate
the separate integrals. Further, note that V; indicates that the gradient operator only operates on

functions of z; and y».

Recalling the definition of the subaperture, W(z,y) (Equation 2.42), and recalling the defi-
nition of the gradient operator:

.8 .0
V= L + y%, (A.3)

VW (z,y) becomes:

) = g o (3t (5)] 2 5 ot (3t ()]

[—6 (:c - %) +6 (z+ g)] rect () 2
+ [-—6 (y - 5) +6 (y + g)] rect (3) ] (A.4)
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Substituting this relationship into Equation A.2 yields:

<5, 5,> =oF <ﬂ (z1Z2 + y1§) W(z1, n1)é(z1, 1 )dz1dy
. (_ [/ (22, y,){[s (z, + gd) -5 (z, “5‘)] rect () 2 |
+ [6 (y,+g) -s(y,- 5)] rect ) }dz,dy,» (A.5) ‘

Separating each integral in Equation A.5 into its z and y components and performing the dot

product results in:

- = 12
<9¢ 0e) = Wg([ 2, W(z1, 1)é(21, y1)dz1dy

Jaenn =) s D

+ ﬂ nW(z1, 1)é(z1, n)dz1dy
x [/ #(z2,1) [6 (m - g) -4 (m+ ;)] rect (%’) dz,dy,> (A.6)

Note that all actions of the first two integral pairs will be duplicated on the second two integral

pairs. Thus, the second two integral pairs are dropped and the entire expression is multiplied by

two to account for them. This yields:

- = 2-12
<9z -9e> = W<ﬂ 7\ W(z1, 11)é(z1, h)dzrdy

x Ida(zg,yz) [6 (22 - ;) -6 (zz + ;)] rect (%) dzzdyg> (A.7)

Combiniug the integrals in Equation A.7, produces:

- = 24
(58 = g [ 2w misen misen

x [6 (2:2 - ;) -5 (z, + g)] rect (‘{-}) dzldzzdyldyg> (A.8)




Note that all terms in Equation A.3 are deterministic except ¢. Thus, the expected value operator

can be taken inside the integrals. This results in:

<0: : 0:> = % 21PV(21,y1) (é(‘l.yl)ﬂzz. yz))

x [6 (32 - ;) -6 (23 + g)] rect (%’-) dzydzady dys (A.9)

An expression for the correlation function, (¢(z1, 11)é(z2,2)), is needed to continue. However,
in atmospheric optics, it is more common to use structure functions rather than correlation func-

tions [22]. The correlation functions and structure functions are related by:
1
(#(z1,91)8(22, 12)) = =5 Do(1.11: 22,30) + T4(0,0) (A-10)

where I'¢(0,0) = ; (¢*(z1,11))+3 (6*(z2, y2)) and is constant since the phase is assumed to be wide

sense stationary {8:pg. 376]. The structure function, Dy, has been determined by Wallner {21:pg.

1774] to be:
-\ ¢
. (-2

D (z,z’) =6.88|-— (A.11)

Therefore, the correlation function can be expressed as:
5/3
6.88 [ V(z2a— 1)’ +(a—-n)’
(¢(21, y1)¢(32t y?)) == 2 (\/ T + P¢(0, 0) (A.12)

Substituting Equation A.12 into Equation A.9, produces:

5/3
<5: -(’1) = ra:,‘s/”/le(zl.m) (-%6.88 (‘/(” —n)f + (s - "‘)2) +T4(0, 0))

To

X [6 (zg - g) -6 (zz + ;)] rect (%) dz;dzodydyy (A.13)

Note, if T'y is separated out from the rest of the integrals and the limits imposed by the subaperture

4
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are set, the resulting integral will be a constant multiplied by an odd function integrated from
—-% to % and hence will become zero. Therefore, the I'y term can be dropped. Recalling the

definition of the subaperture function, Equation 2.42, Equation A.13 becomes:

(=g [ s (3 () [ (- 3) - (e )] e )

x [-6‘88 (\/(22 —21)* + (- )

8/3
2 - ) ]dz1dzzdmdyz (A.14)

Using the sifting property of delta functions to integrate over z3, [6:page 53],
/f(a)&(a - z,)da = f(z,) (A.15)

Equation A.14 becomes:

s/3

<é't 9:> = %ﬁ zyrect (%1) rect (‘%) rect (%) _9% (\/(g' ‘31)2’-4’ (y2 - 91)2)

+6.88 (\/("% - 31)2 + (2~ m)’

2 rs

5/
) dz dydy; (A.16)

To proceed, the following variable substitutions are defined:

Ay=m-n and Ty = y’—;-‘ﬂ (A.17)
Thus,
1 1
B = §Ay+ Xy and n==Ly- §Ay (A.18)

This choice allows the Jacobian to be one. Equation A.16 then becomes:




- 24 Ty-iA i1ay+T
<9¢ -0 =—l:3d3 ﬁzlrect (1;_1) rect (y_f__y) rect (L——yd y)

5/3
_@g( (§-=1)2+(Ay)’) +g§8_(\/(-‘i—=1)2+(Av)’)

5/3

ro 2 ro

xdz dAydLy (A.19)

Note, only two terms in Equation A.19 depend on Ty. Thus, for a moment, just look at:

lay+E - 1A
/ rect ( y;- y) rect (Ey—-‘-{L—y-) dZy (A.20)
Define:
1 N
a= 2A”+’i - da = ‘-li-dEy (A.21)

Then Equation A.20 becomes:

d/rect(a)rect (a - %3[) da (A.22)

which, since Ay/d is a constant for this integral, is immediately recognized as the correlation of
two rect functions. Thus, Equation A.20 can be evaluated by referencing Gaskill {6:page 172] and

using Fourier transform analysis.

iA > -1
/ rect (1%'—") rect (-El—dﬂ) dSy = d tri (éd!) (A.23)

Substituting the result of Equation A.23 into Equation A.19 results in:




5/3

(5-0.) = e [ e () [ ()] _%as(s/(%-zlr).umy)’)

d 2 7\ ¥
+5.88 (\/(’ ta) +(4y) ) dz,dAy (A.24)

2 o

This double integral can be broken into two double integrals yielding:

5/3
- - 24 | 6.88 _( Ay ) d 2
<0, . 9,,) = k—iﬁ 2—’.275‘/21“1 (—d—) rect (7) (‘/(5 +31) + (Ay)z) dz;dAy

5/3

. / d 2
‘-26 ?/‘; zytri (iy) rect (zdl) (\/(5 - 31) + (Ay)z) dz;dAy|(A.25)
To

Recalling that:
1 -§<n<§
rect (ﬂ) = : 2 (A.26)
d
0 otherwise
and,
d-ja
~-d<Ay<d
tri (%) = 4 (A.27)
0 otherwise
the limits on the integrals in Equation A.25 can be set as:
d d
—55215-2' and -d<Ay<d (A.28)

and Equation A.25 becomes:

(1= 2 [ [ [ () (($0) ) s
/ / ( IAyI) <(§—zl)z+(Ay)2)5/6dz1dAy} (A.29)




Numerical techniques must be used to proceed from this point. Bowever, Equation A.29 will first

be written in terms of dimensionless quantities to facilitate the numerical integration. To do so,

let:
€= I - de = 2dz (A.30)
~ d/2 —d ! .
with limits:
—1<€<1 (A.31)
And let:
Ay = % - dAY = %dAy (A.32)
with limits:
—1<AY <1 (A.33)

Substituting Equations A.30, A.31, A.32 and A.33 into Equation A.29, produces:

(0-0)= e [/ [ e (A0 (40 ) v cannr)” (o) -amw)
// ( |dA!/|) ((; "21') +(dAy’)z)5/5(;_‘-d£>(ddAy)] (A.34)

Performing algebraic simplification yields:

50y = 2 [ [ st av (4 20+ ayy?)  asiany

- [ [ - (a -2+ ary)” "azjaay| (a9
-1J-1

Using numerical integration, the difference of these two integrals is found to be 2.014. Thus the




cross-correlation for a square subaperture can then be expressed as:

- = 13.0934
<0' '0‘> - k3ri3q1/s (4.36)

A.2 Derivation of Mean Square Value of z-Tilt, < 0-? >

From Equation 3.36:

(@) =(2) <( (22 +y-5) (2. W (s, v)dady 2> (A37)

Which can be written as:

2
(@) = g ([ @3+ nid b er,00 W (er.m) ity

[ @12+ 0006 1,9 W (22,10 dzzdw> (A.38)

Next, the dot product will be perforrned which will eliminate the unit vectors. Further, just as
in Section A.1, the dot product will form two integrals which will be identical except for different
variables. This duplicate integral can be accounted for by multiplying one of the resulting integrals

by two and dropping the second. Doing this results in:

. 192
(@) =% ([ =9 eom @ m W eLm W @ m)dendndentn) (439

Since ¢ is the only random process in Equation A.39, the expected value operators can be moved

inside the integral yielding:

2.122
<é?> = Tz‘d'i— 2122 ($ (21, 11) 6 (22, 42)) W (21, 11) W (22, 1) ddz dyr dz2dys (A.40)




In Section A.1l. Equation A.12, the correlation function, (¢ (21,31 ) @ (22, ¥2)), was found to be:

V(za =20+ (2 = n)?
To

5/3
(6 (21, ) 8 (22,0 = =23 ( ) L0 (A4

Note that if the ['4(0,0) term is separated out from thz rest of the integrals and the limits imposed
by the subaperture are set, the resulting integral will be a constant multiplied by an odd function
integrated over symmetric limits and hence will become zero. Thus the I'4(0,0) term can dropped

here as well. Including these substitutions and taking out the constants produces:

—6.38 - 122 5/6
<5?> = ——5— [lff 2122 ((z2 = 21)* + (12 — 11)?) "W (21, 31) W (22, 32) dz1dyr dzadys
k2ry d®
(A42)
The subaperture function, W(z, y), serves only to set the limits on the integration. Setting those

limits yields:

—6.88 - 122 df2 pd]2 pdf2 pdf2 6
<53> =T a/a / / _/ / 2122 (23 — 1) + (32 — 01))) ™/ dz1dyrdzady,
k2ry! d8 J-gj2J-dj2J-ds2J-d/2

(A.43)
Equation A.43 can be written in terms of dimensionless quantities to facilitate the numerical inte-

gration. Let:

€1=d—z/‘5 - d£1=gdz1 -1<64 <1
52=d—x/% - d&:‘;—dzg -1<6<1
¢x=d—y/1§ — dtﬁl:gdyl -1<¥:1 <1
w=gs - d¥2 = Sy, —1<¥2<1 (A.44)
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Using these variable substitutions and performing some simplification yields:

<9?>‘ ~6.88 127 / / / / 6162 (52—51) (¢2—¢1)2)5/6d€1d¢1d52dw2

2°25/3k2r5/3d1/3
(A.45)
Using numerical integration to solve this 4-D integral results in:
13.6183
g2y — 0200
<0,> T k2rd3qus (A-46)

A.83 Dertvation of Mean Square Value of g-Tiltl, < 53 >

From Equation 3.38:

<07> <( ﬂw(z y)W(z, y)dzdy)°> (AA4T)

Which becomes:

(@)= () ([[voenmmeminan - [ vastenmWieamadeie) (as8)

Welsh and Gardner {23:page 1914], have shown that:

ﬂW(z,y)Vqﬁ(r,y)dzdy: —[VW(z,y)qS(z,y)dzdy (A.49)

Therefore, Equation A.48 becomes:

1
<é2> = Gn </V1W(z1,y1)¢(:cl,yl)dzldy1 -ﬂV2W(::g,y2)¢(a:2,yz)dzzdyz> (A.50)
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Combining the integrals, resuits in:

(@ = gz { [ 7w ) VWb mben mdsdndzadn)  (a5Y

Again, since ¢ is the only random variable, the expected value operators can be moved inside to

yield:

1
(@)= g [[] 7w TaW ) b1 e o) dmrdndendin (452

Equation A.12 transforms the correlation function to a structure function, resulting in:

<§3> - h'}&? W ViW(z1, 1) - VaW (22, v2) (T4(0,0)

5/3
_6.288 (\/(32 21)r+(y2 ) ) ) dzydydzady,  (A.53)
o

Recalling Equation A.4, which expands out VW(z, y), Equation A.53 can be written as:

— ——\ 5/3
<53>=#W(F¢(0,0)—6'288 (\/(z_ 31)r°+(y2 yl)) )

(e 2) o (- (2 oo 3) s (n-5) e (3)9)
() -s (- D] (D o 5) - ()]s (2)9)}

xdzldyldzgdyz (A54)

Performing the dot product yields:
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()=

M (r¢(0 0)- 28 (‘/(’2“1):“ (yz—yW)m)
{ <"‘+ ) (”“dg)] [5 (”*g) -5(rz—-§-) rect () rect (£2)
[5 (y1+;) -6(y1— 5)] [6 (yz-’r;—l) —5(y2—.:.)] roct (22) rct (22

xdzidydzady; (A.55)

Examination of Equation A.55 reveals that it can be split into two 4-D integrals differing only by
what is an z in one delta or rect function is a y in the other. Thus, as before, the second integral

can be dropped and accounted for by multiply the remaining integral by two, yielding:

<53>=F271?[W (P¢(0 0) - 338 (\/(’”2 "31)i°+ (v2 -m)’)sls)
{5 (e £) = o= )] o () (e ) e (2 (2))

xdz;dy dzody; (A.56)

Multiplying out the delta functions will result in:

<53> = F2d—4 [[/rect ( ) rect (%3) (I‘¢(0 0) - 6.88 (\/(22 = zl):: e y1)2) 5/3)
x[ (zl+ ) (z ) (zl+g)6(zz_g)
-5 (xl - —) 5 (z2 + ) +6 ( g) 5 (zz - 5)] dzydyidzadys (A.57)

To make the next few steps easier to visualize, Equation A.57 can be written as:
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5/3
(%)= (P%) {W reet (37) reet () [m(o 0) - 388 (\/(zrzl)if (yz—yx)") ]

x & (zl + g) & (222 + -;-) dzidy dzady,

o -

5/3
(£) [re(0.0)- ﬁ (\/(7‘2 —z) + 'yl)j)

To

o

x§ (zl + -;-) é (z‘z - g) dz,dy;dz;dy,

.r¢(0, 0) - 6788 (\/(32 - 31):‘:_ v — yl)2> 5/37

; )
x4 (1‘1 - g') ) (32 + g) dz;dy;dz,dy,

.~

5/3]
rect (%) LI‘(,(() ,0) ~ (\/(32 - 1) + (y2 — 31)? )

To

)
) 5 <x2 - g) dzldyldzgdyg} (A.58)

It can be observed that if the integrals were further split to separate the I functions, all integrals
with Ty functions would subtract out. Hence, we can drop those terms. Now using the sifting

property of delta functions to integrate over z; and z3 and recalling Equation A.15, we get:

5/6
—6.88 d d\\’
g u Ly[(_2_(.E — )’
(7) - (k2r5,3d4){ [ e ()t (2) (( () +nom ) i
d d 5/6
n y
—] rect (—d-) rect F) ((5 (—5)) + (2 —w) ) dy;dy.
i d e
n 7]
—[ rect (Ti-) rect (7) ((—--2- - 5) +(y2 - yl) ) dyidy,
d d\? o8
n 23 2_3 —u)?
+ﬂ rect(d)rect(d) ((2 2) +(y2—wn) ) dyldyg}(A.SQ)
Note that in integral pairs | and 4, the % terms cancel out, where as in integral pairs 2 and 3, the

% terms add to form d. Thus integral pairs 1 and 4; and 2 and 3 are identical. Once again, the
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duplicate integral pairs will be deleted and the remaining integrals will be multiplied by two to

account for them. Further, the rect functions serve only to set limits on the integration:

<0:‘> = ( ‘26’_58,83 df) / 2/; / ‘://: [((yz —yx)z) v (d’ + (2 -yx)z)m] dypdys  (A.60)

Equation A.60 can be written in terms of dimensionless quantities with the following variable

changes:

d
¢I_E7—2' — dy1—§d¢l _151/)151
b= 4 _§d¢ —1<y¥s<1 (A.61)
2= 42 Y2 =gcve =¥ = '

which after simplification yields:

o\ _ 6.88 b 2\ /6 5/3
()= (mnsegs) UL L @+ @mw0) " — - n P anan] e

Using numerical integration to solve this 2-D integral results in:

12.803
g2\ — 2009
<0‘> - k2rg/3d1/3 (A.63)
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Appendix B. Derivation Details for Shearing Interferometer

This appendix provides details of the derivations for the Shearing Interferometer.

B.1 Dertvation of Count Vector, K(n)

From Equation 2.29:

K(n)= 2laﬁ [1 +Vcos (2—-;- + A¢(z,y, Az))] W, (z, y)W,;(t)dtdzdy (B.1)

which can be separated to obtain:

K(n) =2]a [ﬁ W, (z, y)W,(t)dtdzdy

t
+9 [ cos (3 + 20ta.0,80) ) Wate wWititaess] (B2
The first triple integral is trivial and simplifies to:
2t
K(n) =2la [A'r + Vﬁcos (T + Ad(z, y, A:r:)) W,(=z, y)W,(t)dtdzdy] (B.3)
where A = d? has been defined as the area of the detector element. Now, using the relationships:
el 4 eI

cosa = ———— and ela+d) = ea¢h (B.4)

Equation B.3 becomes:

K(n) =2la [Ar+-‘2£ ﬁ (eJ’i"‘eJ“"-V-A’)+e-J’*‘e-JMW-A=)) W,(z,y)w,(t)dtdzdy] (B.5)




which becomes:

K(n) = 210{Ar + % / & F W, (t)de ﬂ J8H=1 AW (2 y)dzdy

+ 3 [erPwa [Jemsweranm,, y)dzdy]

For a moment, just look at the term:

I 2=V 82)W (2, y)dzdy

(B-6)

(B.7)

which represents the component of the measurement proportional to the change in wavefront phase.

Assuming that Az, the shear, will be adjusted such that A¢(z,y, Az) < 2x, which will be required

for accuracy, then the approximation,
T4z for small ¢
can be used and Equation B.7 becomes:
] W(z,y)dzdy + J A¢(z,y, Az)W,(z, y)dzdy

Defining:

ARH(Az) = ] Ad(z, v, Az)W,(z, y)dzdy

and using the definition in Equation B.10, Equation B.9 becomes:

A—jAA$(Az) = A(1 +)Bd(Az))

B-2

(B.8)

(B.9)
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And using Equation B.8 in reverse. Equation B.7 becomes:
ﬂe”“(""“)w,(r, y)dzdy = AeBHas) (B.12)
Substituting Equation B.12 into Equation B.6 the count vector becomes:
R(n) = 2Ia [Ar + A; / SBHAD) 3 7 (1)t +A§ / ¢~ 18¥(82) -1 3t w,(:)dz] (B.13)
which can be recombined to form:
K(n) = 2IaA [r +V / 08 (2%‘ + A—¢(Az)) W.(t)dt] (B.14)
Recalling Equation 2.28, the limits in the integral can be set as:
— ™=5 ot —
K(n) = 2IaA [r +V _ cos (?- + A¢(Az)) dt] (B.15)

Performing the integration results in:

K(n) = 2IaA [r + -‘g [sin (2’"" + =4 Ka(Az)) — sin (2"" - +H(Az))]] (B.16)

T T T T

Using the relationship:

sina-sinﬁ=2cos%(a+ﬂ)sin%(a—ﬂ) (B.17)

Equation B.16 simplifies to:

R(n) = 2IaA [r + gsin ("—;) cos (2’;" +A—¢(Az))] (B.18)
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Assuming that the sampling rate is such that:

=<1 - & (B.19)

T
r

(note that Nyquist criteria requires 7 < T/2) then the small angle approximation can be used for
sine:

sin(z) = z forz <1 (B.20)

and Equation B.18 simplifies further to:

K(n) = 2IcA [r+ Vrcos (2’;,"' +K$(Az))] (B.21)
By using the relationship:
T-N=p,-T (B.22)

where 7 is the integration time, N is the number of samples in the count vector, K(n), i.e.0 < n <
N —1, p, is the number of fringes embraced by the count vector and T is the period of the fringe.

Then Equation B.21 can be written as:

27p,n

K(n) = 2IatA [1 +Vecos ( + 2K$(Az))] (B.23)

B.2 Mean Square Value of < é? >

Using Equations 2.41 and 2.46, the mean square value of s-tilt can be expressed as:

(&)= <(7}J)2 (ﬁ [ é“’(‘—"é’"\—‘)mz. y)dzdy +§ [/ é"’—(’Z’!’I—""‘QW(;«, y)dzdy)2> (B.24)




Which simplifies to yield:

(@)= s s [ 2o v 20wz ety i = [ 26,85z, spizay

+———k ay [/ Adé(z,y, Ay)W(z, y)dzdy - m ﬂ Ad(z,y, Ay)W(z,y)dzdy>(8.25)

Examination of Equation B.25 reveals that the two added terms are essentially the same. Therefore,
the second term can be dropped and accounted for by multiplying the first by two. Doing this and

combining the four resulting integrals yields:

()= < Xroes] W A¢(:n,y1,Az)A:#(zz,yz,Az)W(zl,yl)W(z,,y;)dzldyldzgdyg> (B.26)

Since W(z,y) is deterministic, A¢ is the only random term. Hence, the expected value operator

can be moved inside the integrals to yield:

2
(#) = gmzs [ @¢tzim, 2208800, 10, 82) W1, 10)W (a2, m)dzidndzadys (B27)

An expression for (Ad(z1,y1, Az)Ad(z2, y2, Az)) is therefore needed. Recalling the definition for
Ad:

Ad(z,4,A2) = bz - Z2.3) — bz + 529) (B.28)

The correlation function becomes:

(A8(z1, 1, 82)80(z2 12, 52)) = ( [ole ~ T o) ~ ber + 5,

[per- T - s Bm]) @29
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which can be expanded to be:

(Ao(zy, 1, A2)Ad(z2, 12, Az)) = <¢ (zl - %z-, yl)
n

A A
-9 (21 + Tz;yl ¢ (zz - —2:',!12)

A
+¢ (an + -55,311

SN’
A=
N
Ll
~
+

~|
$

S—”

~o
—~
=
(Y]
(=]
~—

An expression for these correlation functions was found in Chapter 111, Equation 3.32, to be:

5/3
(b1, wbler, ) = - 22 (‘/(”’ SR "‘)7) S0 (B3Y

Therefore, by substitution of Equation B.31 and pulling out the constants, Equation B.30 becomes:

-]
3
. 6.88 A Az\?
(Ad(z1, 41, AT)AG(Z2, 32, AT)) = T \/(1'2 + —23 -1+ —;-:) +(@a-n)’
To

Substituting Equation B.32 into Equation B.27, after some algebraic simplification, yields:

2 6.88 3 $
<0?> Ty e 2—r§/—3 [\/(32 —z1+82) + (1 -n)’ + \/(zz -z - Az)* + (12 — 1)’

$
—2\/(z2—21)* + (32 — 91)® | W(z1, )W (22, p)dz1dys dz2dy(B.33)




Recalling Equation 2.42, the aperture function, Equation B.33 becomes:

3 3
a2\ _ 6.38 _ 2 2 o 2 2
(%) = k2dsAz3rd/? W [‘/("-’ n+82) + -+l -2 -2 + (- n)

~2\/(22 - 21)* + (1 -yl)”]

xrect (?) rect ( i ) rect (!2) rect ( ) dzdydzady; (B.34)

Equation B.34 can be written in dimensionless form by making the following substitutions:

- T . =9
fc = d/2 dzl—2d£i)
- Y - = %40
¥ = 72 dy.—2d¢. and
s = 4z (B.35)
o

After some simplification, Equation B.34 then becomes

<9?> = 2425/32;281/3r§/3 (d/sro)2
"[/ﬂ \/(£2 b+ ) — +\/(E:—Ex —23/5’;;)21»(%—%)”
T o () () (8] ()

xd§; dyr dézdy, (B.36)

Note that all the terms inside the integrals are dimensionless, which allows solving Equation B.36

to simply be an exercise in calculus. Therefore, the following variable substitution will be defined:

Af=g-g and Te= 2EE g oweo Jaf and 6=+ 8
Ab=wr-w and To =230 Ly o5y JAY and a=Se+5Aw (BAT)
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This choice allows the Jacobian to be one. Equation B.36 then becomes:

<9,>_ 6.88 d/ro\?
*1 T ga98/3p241/3,.53 \ s

2 % 2 i
d _9. 5 2| _ ]
X M [ (M+2d/1’o) a4 (L\‘f 2d/ro) +ay 2|A£2 +A¢2| ]
- 1 -1 1
xrect (-———26 %M) rect (~-—————Ef + 5Af) rect (-——2‘6 2A¢) rect (—d—zd) + #Aw)
2 2 2 2
xdAEdAYdEZEdEy (B.38)

Note that all terms that depend on Ty can be separate out. So, just for a moment, we can look

only at the integral:

o1 1
/rect (-E—w—%A—'e) rect (-E—‘b—%}.—Ai) dZy (B.39)

which is identical to Equation A.20 in Appendix A.l. Thus, from Equation A.23, this simply

becomes:
-1 L
/rect (%ﬂ) rect (Ef-%—"'-éi) dZ¢ = 2tri (922) (B.40)

Similarly, all terms that depend on ££ can be separated from Equation B.38 to yield:

/rect (26——2%9—{-) rect (E_é-;.‘,ﬁ) dX¢ = 2tri (%) (B.41)

Substituting Equations B.40 and B.41 back into Equation B.38 yields:

(52)_ 6.88 d/ro\?
0/ 7 9295/3k241/3,3/3 \ s
2
hd 2
XI[I<A€+2d/r,) + a9

< (3] o (3 s

i &

s

2
(Af - 2-(1/—'_0) + A\bz

+

_2|A£2+A¢2I*]
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Recalling the definition of the tri function, Equation A.27, setting the limits on the integration and

performing some minor algebraic simplification, Equation B.42 becomes:

i

<53>= 6.88 (al/r,,)z/2 22(2-|A5|)(2—|A¢I) [I(M+2d;r,)2+A"’2

2498/3k241/3,3/3 \ s

-2J-

]

s \? 2
+ (M—?R) + Ay

-2jagt+ A¢’|*] dAEdA (B .43)

Which could be written as:

<8’> _ 0.13544f, (s3)

s PORYERIE (B.44)

where f, (5%¢) is defined to be:

@ =6 [ [ e a2+ av’

+ |((A£ -22)* + A¢2|* -2|(ae%+ A¢2|*] dAgdAy (B.45)

B.8 Derivation of Cross-Correlation of z-tilt and s-tilt, <5, 5,>

From Equation 4.23

L7 Ed¥

CEARE <[if 20(z, YW (@ n)dzdy | fy¢(z,y)W(z,y)dzdy]

12 12
(. [Ad(z,y, Az)W (z,y)dzdy | . [ Ad(z,y, Ay)W(z, y)dzdy
[’ Azkd? +y Aykd® (B.46)

Performing the dot product yields:

(8-0)=((zzzm [ 2900 20wz s1isay) - (5 [ 200e, Wz, 90tea0)
+( gz [ a¢te v 80w e, nazay) - (5 [ wte, 9w (e, pinay) Yo am
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Again, the first two integral pairs are essentially identical to the second two pairs. Hence, the
second two integral pairs can be dropped and accounted for by multiplying the first two integral

pairs by two. Combining the remaining integrals and pulling out the constants yields:

o o 2.12
<0z -0°> = <WM32A¢(3I,ULAI)¢(ZZ:y2)W(31yyl)W(1'2)y2)dzld32dyldy2> (B.48)

Since ¢ and A¢ are the only random terms, the expected value operators can be moved inside the

integrals to yield:

- = 24
(b8 = sor [ =2 (0011, 8200z ) Wiar, )W ez, m)deidardmdye - (B49)

Therefore, an expression for {A¢(z1, 11, Az)d(z2, y2)) is needed. Again recalling Equation 2.13,

this correlation function can be written as:

(Ad(z1, 11, Az)P(22, 32)) = <¢ (171 - %,yl) ¢(z2,y2) — ¢ (z1 + %.yl) ¢(xz,yz)> (B.50)

After using Equation 3.32, this simplifies to:

(Ad(z1, 1, Az)p(22, y2))

3 3
3 3
6.88 az\? Az\?
=573 ¢<""~’ -z + —‘) +(m-n)? - \/(1‘2 -z - —) +(w—-u)? |(BS51)
2r 2 2

o

Substituting Equation B.31 into Equation B.49 yields:

3
Py 3

~ = 24 6.88 Az\~
<0z '03> = TR "y z2W (21, y1)W (22, 42) \/(32 -z + —2—) + 2 —n)

s
3

Az\?
—\/(22 -z — —2—> +(y2 — y1)2 dzydzady dys (B.52)
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Recalling the definition of the subaperture function, Equation 2.42, Equation B.52 becomes:

aly

<§¢ 5,) = Ki—iz——d%ig? W Zarect (fdl) rect ( ) rect (%) rect (%)

3
3
Az)? Az\?
X \/(22—31'*'7:) 4’(.112"'111)2 -\/(32‘31"Tz> +(3/2‘y1)2

xdzidzedy dys (B.53)

3
3

As before, the integral in Equation B.53 will be normalized with the same variable substitution

that was used in Section B.2, Equation B.35. After some simplification, Equation B.53 becomes:

A 12.6.88 d/r, 3 &2 ¥ Y2
<0, .0,> = T PYVER I Mfgrect ( 5 ) rect (2 ) rect (-2—) rect ( 5 )
s s *]

X [ d/r, d/r,
xd§1dé2dyrdee (B.54)

s
[

&-&+ 2+(¢2-¢1)2 b2-6& - 2+(¢2—w1)2
( )

Again, following similar steps in as Section B.2, the variable substitution defined by Equation B.37

is made, allowing Equation B.54 to become:

- o\ 12-688  d/r, 1
<'-0’>_2525/3k2d1/3r3/3 s M(§M+Ef)

1 (o) ++]|

~1 1 -1
xrect (—-——EE 2A£> rect (E£+ 2A£) rect (E¢ 2A11))

i

2
(A£+d/sr) +AY?

) 2 2
1
xrect (gﬁ_g_ﬂ) dAEdTEdAYITY (B.55)
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(

-\ 12-688  d/r,| 71
'0’>_2425/3k2d1/3,.o5/3 s [ﬁiM U(

Examination of Equation B.55 shows that all terms that depend on Ty can easily be separated.

Thus, just as in Section B.2, we can just look at the integral:
by 1 -1
/ rect (L;M’) rect (Elifi’f) 4Ty (B.56)

This is identical to Equation B.39 and simply becomes:

1, -1
/rect (E’!’_iigﬂ) rect (§_¢_2ﬂ) dZy = 2tri (%‘k) (B.57)

Hence, Equation B.55 becomes:

. 12-6.88  d/rs 1
<9" ’>_ 9495/3k241/3,5/3 s ﬁ (§A£+E£)

2
x[(A£+ > ) + Ay?

i

s \?2 , 3
d/"'a ( - ;17."_:;) +ay
~1 1
xrect (E?Zﬁ) rect (E%A&) tri (A2—¢)

xdAEdSEdAY (B.58)

To aid in the visualization of the next steps, Equation B.58 will be written as:

2 §.
) + Ay?

aJr ;(“'7‘) +adt

-1 1
xrect(z—év«f——) ("‘“ AE) ( )dAedzedAw

[/ ¢ U (A£+ +A¢2 ‘ %J

=1
xrect (Ef_ff.) (25 + 8¢ ) ( ) dA{dE{dAw](B 59)

1

+ Ay?
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Figure B.1. Plot Showing Integration of an Odd Function over a Symmetric Period.

In the first triple integral of Equation B.59, the terms depended on I are easily separated to form

the common result:

~1, 1
/rect (8652—2&) rect (Ef—.:;-ﬁ) dZ€ = 2tri (%—é) (B.60)
The ¢ terms in the second triple integral can also be separated as:
e L L
/E&ect (_..6_22,__) rect (M) d=¢ (B.61)

While Equation B.61 is not as trivial as the others, examination of Figure B.1 reveals that it is

merely the integration of an odd function, £¢, over a symmetric interval, and hence the integral is

zZero.
_1 1
/ Terect (2'5—223) rect (%) dTe =0 (B.62)

Therefore, the second triple integral in Equation B.59 goes to zero and, after substituting in Equa-~

tion B.60, Equation B.59 becomes:
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i 2 i
s o\ _ 12688  d/r, f[1 s ) 4 ag? ( - ) 2
<"“”’>‘2325/3k2d1/3r2/3 - [2‘““(“’*‘1/%) +Ay l Ag- ) +av
xtri (%—{) tri (%) dAédAy (B.63)

Recalling the definition of tri functions, Equation A.27, Equation B.63 becomes:

By = 28 I [ [ ag o lagh - 1av)

T 2695/3k241/3,%/3 s

s \? 2% s \? 2%
(o) s o] (e gi) v
xdAEdAY (B.64)

Equation B.64 can be written as:

= =\ _ 0.406325f. (s%¢)
<0' -8,> T k2q1/3p503 : (B.65)
where f. (sZ#) is defined as:
2 2
r@=t [ ace- i@ -1av)
3 3
x “(Af +z)} + AP - ](Ag -z)’ + Ay? ] dA£dAY (B.66)
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